Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 10 entries in the Bibliography.


Showing entries from 1 through 10


2021

Multi-Point Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation

AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions were amplified by local anisotropic electron distributions, and their large-scale amplitudes were modulated by the plasma density. A novel observation of this event is that chorus waves at frequencies above QP emissions exhibit a strong correlation with QP emissions. Those chorus waves intensified when the QP emissions reach their peak frequency. This indicates that embryonic QP emissions may be critical for its own intensification as well as chorus waves under certain circumstances. The low-earth-orbit POES satellite observed enhanced energetic electron precipitation in conjunction with the Van Allen Probes, providing direct evidence that QP emissions precipitate energetic electrons into the atmosphere. This scenario is quantitatively confirmed by our quasilinear diffusion simulation results.

Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028484

quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave

2020

Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients

Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (by the THEMIS probes, Geotail satellite, GOES satellites, and Van Allen probes) and ground-based (by the all-sky imager at South Pole and ground-based magnetometers) observations to simultaneously analyze the waves from the foreshock region to the dayside and nightside magnetosphere. Both of our two events show that the Pc5 ULF waves are generated by foreshock transients in the dayside magnetosphere. The in situ observations by THEMIS A and D and the 2-D auroral signatures show that the compressional mode waves are likely broadband and coupled to the FLRs with different frequencies and different azimuthal phase speeds. This is the first report that foreshock transients can drive both low- and high-m FLRs, with the azimuthal wave numbers varying from ~5 to ~23. Moreover, the Pc5 ULF waves propagated antisunward to midnight, this can potentially modulate magnetospheric and ionospheric dynamics globally.

Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028411

ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes

Relation Between Shock-Related Impulse and Subsequent ULF Wave in the Earth s Magnetosphere

The generation of Pc4-5 ultralow frequency (ULF) waves after interplanetary shock-induced electric field impulses in the Earth s magnetosphere is studied using Van Allen Probes measurements by investigating the relationship between the first impulses and subsequent resonant ULF waves. In the dayside, the relevant time scales of the first impulse is correlated better with local Alfvén speed than with local eigenfrequency, implying that the temporal scale of the first impulse is more likely related to fast-mode wave propagation rather than local field line resonance. There are only 20 out of 51 events with narrow-band poloidal ULF waves induced after the first impulse, showing a higher chance for ULF wave generation at the locations where the impulse equivalent frequency scale matches the local eigenfrequency. It is suggested that the shock-related ULF wave can be excited in the magnetosphere on condition that shock-induced impulse has large enough amplitude with its frequency matching the local eigenfrequency.

Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Wang, Yongfu; Xiao, Chao; Zhang, Zhao; Wygant, John;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090027

ULF wave; interplanetary shock; Magnetosphere; Field line resonance; electric field; wave excitation; Van Allen Probes

2019

Eastward Propagating Second Harmonic Poloidal Waves Triggered by Temporary Outward Gradient of Proton Phase Space Density: Van Allen Probe A Observation

Two wave packets of second harmonic poloidal Pc 4 waves with a wave frequency of ~7 mHz were detected by Van Allen Probe A at a radial distance of ~5.8 RE and magnetic local time of 13 hr near the magnetic equator, where plasmaspheric refilling was in progress. Proton butterfly distributions with energy dispersions were also measured at the same time; the proton fluxes at 10-30 keV oscillated with the same frequency as the Pc 4 waves. Using the ion sounding technique, we find that the Pc 4 waves propagated eastward with an azimuthal wave number (m number) of ~220 and ~260 for each wave packet, respectively. Such eastward propagating high-m (m > 100) waves were seldom reported in previous studies. The condition of drift-bounce resonance is well satisfied for the estimated m numbers in both events. Proton phase space density was also examined to understand the wave excitation mechanism. We obtained temporal variations of the energy and radial gradient of the proton phase space density, and find that temporal intensification of the radial gradient can generate the two wave packets. The cold electron density around the spacecraft apogee was > 100 cm-3 in the present events, and hence the eigen-frequency of the Pc 4 waves became lower. This causes the increase of the m number which satisfies the resonance condition of drift-bounce resonance for 10-30 keV protons, and meets the condition for destabilization due to gyro-kinetic effect.

Yamamoto, K.; e, Nos\; Keika, K.; Hartley, D.P.; Smith, C.W.; MacDowall, R.J.; Lanzerotti, L.J.; Mitchell, D.G.; Spence, H.E.; Reeves, G.D.; Wygant, J.R.; Bonnell, J.W.; Oimatsu, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019JA027158

drift-bounce resonance; Geomagnetic storm; plasmasphere; ring current; substorm; ULF wave; Van Allen Probes

Contribution of ULF wave activity to the global recovery of the outer radiation belt during the passage of a high-speed solar wind stream observed in September 2014

Energy coupling between the solar wind and the Earth\textquoterights magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfv\ enic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on September 22, 2014, which coincides with the corotating interaction region preceding a high-speed stream and the occurrence of persistent substorm activity, provides an excellent scenario to explore the contribution of ULF waves. To support our analyses, we employed ground and space-based observational data, global magnetohydrodynamic (MHD) simulations, and calculated the ULF wave radial diffusion coefficients employing an empirical model. Observations show a gradual increase of electron fluxes in the outer radiation belt and a concomitant enhancement of ULF activity that spreads from higher to lower L-shells. MHD simulation results agree with observed ULF wave activity in the magnetotail, which leads to both fast and Alfv\ en modes in the magnetospheric nightside sector. The observations agree with the empirical model and are confirmed by Phase Space Density (PhSD) calculations for this global recovery period.

Da Silva, L.; Sibeck, D.; Alves, L.; Souza, V.; Jauer, P.; Claudepierre, S.; Marchezi, J.; Agapitov, O.; Medeiros, C.; Vieira, L.; Wang, C.; Jiankui, S.; Liu, Z.; Gonzalez, W.; Dal Lago, A.; Rockenbach, M.; Padua, M.; Alves, M.; Barbosa, M.; Fok, M.-C.; Baker, D.; Kletzing, C.; Kanekal, S.; Georgiou, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA026184

alfv\ en fluctuations; Earth\textquoterights magnetosphere; high speed stream; Radiation belts; relativistic electron flux; ULF wave; Van Allen Probes

2018

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolution by roughly an order of magnitude\textemdashare crucial for understanding ULF wave-particle interactions. In particular, the ultrahigh-resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard measurements provide estimates for the ULF flux modulation amplitude, period, and phase that may not be representative of true flux modulations, potentially leading to ambiguous conclusions concerning electron dynamics.

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

Poloidal mode wave-particle interactions inferred from Van Allen Probes and CARISMA ground-based observations

Ultra-low-frequency (ULF) wave and test particle models are used to investigate the pitch angle and energy dependence of ion differential fluxes measured by the Van Allen Probes spacecraft on October 6th, 2012. Analysis of the satellite data reveals modulations in differential flux resulting from drift resonance between H+ ions and fundamental mode poloidal Alfv\ en waves detected near the magnetic equator at L\~5.7. Results obtained from simulations reproduce important features of the observations, including a substantial enhancement of the differential flux between \~20\textdegree - 40\textdegree pitch angle for ion energies between \~90 - 220keV, and an absence of flux modulations at 90\textdegree. The numerical results confirm predictions of drift-bounce resonance theory and show good quantitative agreement with observations of modulations in differential flux produced by ULF waves.

Wang, C.; Rankin, R.; Wang, Y.; Zong, Q.-G.; Zhou, X.; Takahashi, K.; Marchand, R.; Degeling, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2017JA025123

ULF wave; drift-resonant; test particle simulation; Van Allen Probes

2016

Modulation of chorus intensity by ULF waves deep in the inner magnetosphere

Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this study, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <\~ 0.3fce), but cannot account for the observed higher-frequency chorus waves, including the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. In addition, we use combined observations of Radiation Belt Storm Probes (RBSP) A and B to verify that the ULF wave event is spatially local and does not last long.

Xia, Zhiyang; Chen, Lunjin; Dai, Lei; Claudepierre, Seth; Chan, Anthony; Soto-Chavez, A.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016GL070280

chorus modulation; inner magnetosphere; ULF wave; Van Allen Probes; whistler wave

2015

Fast damping of ultralow frequency waves excited by interplanetary shocks in the magnetosphere

Analysis of Cluster spacecraft data shows that intense ultralow frequency (ULF) waves in the inner magnetosphere can be excited by the impact of interplanetary shocks and solar wind dynamic pressure variations. The observations reveal that such waves can be damped away rapidly in a few tens of minutes. Here we examine mechanisms of ULF wave damping for two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001. The mechanisms considered are ionospheric joule heating, Landau damping, and waveguide energy propagation. It is shown that Landau damping provides the dominant ULF wave damping for the shock events of interest. It is further demonstrated that damping is caused by drift-bounce resonance with ions in the energy range of a few keV. Landau damping is shown to be more effective in the plasmasphere boundary layer due to the higher proportion of Landau resonant ions that exist in that region.

Wang, Chengrui; Rankin, Robert; Zong, Qiugang;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020761

drift-bounce resonance; Landau damping; ULF wave

2014

Analytic expressions for ULF wave radiation belt radial diffusion coefficients

We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV\textemdasheven though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp.

Ozeke, Louis; Mann, Ian; Murphy, Kyle; Rae, Jonathan; Milling, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019204

Diffusion Coefficient; Radiation belt; ULF wave



  1